Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.553
Filtrar
1.
Nat Commun ; 15(1): 3093, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600118

RESUMO

Sensory-motor interactions in the auditory system play an important role in vocal self-monitoring and control. These result from top-down corollary discharges, relaying predictions about vocal timing and acoustics. Recent evidence suggests such signals may be two distinct processes, one suppressing neural activity during vocalization and another enhancing sensitivity to sensory feedback, rather than a single mechanism. Single-neuron recordings have been unable to disambiguate due to overlap of motor signals with sensory inputs. Here, we sought to disentangle these processes in marmoset auditory cortex during production of multi-phrased 'twitter' vocalizations. Temporal responses revealed two timescales of vocal suppression: temporally-precise phasic suppression during phrases and sustained tonic suppression. Both components were present within individual neurons, however, phasic suppression presented broadly regardless of frequency tuning (gating), while tonic was selective for vocal frequencies and feedback (prediction). This suggests that auditory cortex is modulated by concurrent corollary discharges during vocalization, with different computational mechanisms.


Assuntos
Córtex Auditivo , Animais , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Retroalimentação Sensorial/fisiologia , Retroalimentação , Callithrix/fisiologia , Vocalização Animal/fisiologia , Percepção Auditiva/fisiologia , Estimulação Acústica
2.
Nat Commun ; 15(1): 3116, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600132

RESUMO

Spatiotemporally congruent sensory stimuli are fused into a unified percept. The auditory cortex (AC) sends projections to the primary visual cortex (V1), which could provide signals for binding spatially corresponding audio-visual stimuli. However, whether AC inputs in V1 encode sound location remains unknown. Using two-photon axonal calcium imaging and a speaker array, we measured the auditory spatial information transmitted from AC to layer 1 of V1. AC conveys information about the location of ipsilateral and contralateral sound sources to V1. Sound location could be accurately decoded by sampling AC axons in V1, providing a substrate for making location-specific audiovisual associations. However, AC inputs were not retinotopically arranged in V1, and audio-visual modulations of V1 neurons did not depend on the spatial congruency of the sound and light stimuli. The non-topographic sound localization signals provided by AC might allow the association of specific audiovisual spatial patterns in V1 neurons.


Assuntos
Córtex Auditivo , Localização de Som , Córtex Visual , Percepção Visual/fisiologia , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Estimulação Luminosa/métodos , Estimulação Acústica/métodos
3.
PLoS Biol ; 22(3): e3002534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466713

RESUMO

Selective attention-related top-down modulation plays a significant role in separating relevant speech from irrelevant background speech when vocal attributes separating concurrent speakers are small and continuously evolving. Electrophysiological studies have shown that such top-down modulation enhances neural tracking of attended speech. Yet, the specific cortical regions involved remain unclear due to the limited spatial resolution of most electrophysiological techniques. To overcome such limitations, we collected both electroencephalography (EEG) (high temporal resolution) and functional magnetic resonance imaging (fMRI) (high spatial resolution), while human participants selectively attended to speakers in audiovisual scenes containing overlapping cocktail party speech. To utilise the advantages of the respective techniques, we analysed neural tracking of speech using the EEG data and performed representational dissimilarity-based EEG-fMRI fusion. We observed that attention enhanced neural tracking and modulated EEG correlates throughout the latencies studied. Further, attention-related enhancement of neural tracking fluctuated in predictable temporal profiles. We discuss how such temporal dynamics could arise from a combination of interactions between attention and prediction as well as plastic properties of the auditory cortex. EEG-fMRI fusion revealed attention-related iterative feedforward-feedback loops between hierarchically organised nodes of the ventral auditory object related processing stream. Our findings support models where attention facilitates dynamic neural changes in the auditory cortex, ultimately aiding discrimination of relevant sounds from irrelevant ones while conserving neural resources.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Fala , Retroalimentação , Eletroencefalografia/métodos , Córtex Auditivo/fisiologia , Estimulação Acústica/métodos
4.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467426

RESUMO

Auditory perception can be significantly disrupted by noise. To discriminate sounds from noise, auditory scene analysis (ASA) extracts the functionally relevant sounds from acoustic input. The zebra finch communicates in noisy environments. Neurons in their secondary auditory pallial cortex (caudomedial nidopallium, NCM) can encode song from background chorus, or scenes, and this capacity may aid behavioral ASA. Furthermore, song processing is modulated by the rapid synthesis of neuroestrogens when hearing conspecific song. To examine whether neuroestrogens support neural and behavioral ASA in both sexes, we retrodialyzed fadrozole (aromatase inhibitor, FAD) and recorded in vivo awake extracellular NCM responses to songs and scenes. We found that FAD affected neural encoding of songs by decreasing responsiveness and timing reliability in inhibitory (narrow-spiking), but not in excitatory (broad-spiking) neurons. Congruently, FAD decreased neural encoding of songs in scenes for both cell types, particularly in females. Behaviorally, we trained birds using operant conditioning and tested their ability to detect songs in scenes after administering FAD orally or injected bilaterally into NCM. Oral FAD increased response bias and decreased correct rejections in females, but not in males. FAD in NCM did not affect performance. Thus, FAD in the NCM impaired neuronal ASA but that did not lead to behavioral disruption suggesting the existence of resilience or compensatory responses. Moreover, impaired performance after systemic FAD suggests involvement of other aromatase-rich networks outside the auditory pathway in ASA. This work highlights how transient estrogen synthesis disruption can modulate higher-order processing in an animal model of vocal communication.


Assuntos
Córtex Auditivo , Tentilhões , Feminino , Animais , Masculino , Tentilhões/fisiologia , Aromatase , Reprodutibilidade dos Testes , Vocalização Animal/fisiologia , Estimulação Acústica , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Córtex Auditivo/fisiologia
5.
Sci Rep ; 14(1): 7078, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528192

RESUMO

Mouse auditory cortex is composed of six sub-fields: primary auditory field (AI), secondary auditory field (AII), anterior auditory field (AAF), insular auditory field (IAF), ultrasonic field (UF) and dorsoposterior field (DP). Previous studies have examined thalamo-cortical connections in the mice auditory system and learned that AI, AAF, and IAF receive inputs from the ventral division of the medial geniculate body (MGB). However, the functional and thalamo-cortical connections between nonprimary auditory cortex (AII, UF, and DP) is unclear. In this study, we examined the locations of neurons projecting to these three cortical sub-fields in the MGB, and addressed the question whether these cortical sub-fields receive inputs from different subsets of MGB neurons or common. To examine the distributions of projecting neurons in the MGB, retrograde tracers were injected into the AII, UF, DP, after identifying these areas by the method of Optical Imaging. Our results indicated that neuron cells which in ventral part of dorsal MGB (MGd) and that of ventral MGB (MGv) projecting to UF and AII with less overlap. And DP only received neuron projecting from MGd. Interestingly, these three cortical areas received input from distinct part of MGd and MGv in an independent manner. Based on our foundings these three auditory cortical sub-fields in mice may independently process auditory information.


Assuntos
Córtex Auditivo , Corpos Geniculados , Camundongos , Animais , Corpos Geniculados/fisiologia , Córtex Auditivo/fisiologia , Neurônios , Neuritos , Vias Auditivas/fisiologia , Tálamo/fisiologia
6.
Cortex ; 174: 1-18, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484435

RESUMO

Hearing-in-noise (HIN) ability is crucial in speech and music communication. Recent evidence suggests that absolute pitch (AP), the ability to identify isolated musical notes, is associated with HIN benefits. A theoretical account postulates a link between AP ability and neural network indices of segregation. However, how AP ability modulates the brain activation and functional connectivity underlying HIN perception remains unclear. Here we used functional magnetic resonance imaging to contrast brain responses among a sample (n = 45) comprising 15 AP musicians, 15 non-AP musicians, and 15 non-musicians in perceiving Mandarin speech and melody targets under varying signal-to-noise ratios (SNRs: No-Noise, 0, -9 dB). Results reveal that AP musicians exhibited increased activation in auditory and superior frontal regions across both HIN domains (music and speech), irrespective of noise levels. Notably, substantially higher sensorimotor activation was found in AP musicians when the target was music compared to speech. Furthermore, we examined AP effects on neural connectivity using psychophysiological interaction analysis with the auditory cortex as the seed region. AP musicians showed decreased functional connectivity with the sensorimotor and middle frontal gyrus compared to non-AP musicians. Crucially, AP differentially affected connectivity with parietal and frontal brain regions depending on the HIN domain being music or speech. These findings suggest that AP plays a critical role in HIN perception, manifested by increased activation and functional independence between auditory and sensorimotor regions for perceiving music and speech streams.


Assuntos
Córtex Auditivo , Música , Percepção da Fala , Humanos , Encéfalo/fisiologia , Percepção Auditiva/fisiologia , Audição , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Percepção da Fala/fisiologia , Percepção da Altura Sonora/fisiologia , Estimulação Acústica
7.
J Physiol ; 602(8): 1733-1757, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493320

RESUMO

Differentiating between auditory signals of various emotional significance plays a crucial role in an individual's ability to thrive and excel in social interactions and in survival. Multiple approaches, including anatomical studies, electrophysiological investigations, imaging techniques, optogenetics and chemogenetics, have confirmed that the auditory cortex (AC) impacts fear-related behaviours driven by auditory stimuli by conveying auditory information to the lateral amygdala (LA) through long-range excitatory glutamatergic and GABAergic connections. In addition, the LA provides glutamatergic projections to the AC which are important to fear memory expression and are modified by associative fear learning. Here we test the hypothesis that the LA also sends long-range direct inhibitory inputs to the cortex. To address this fundamental question, we used anatomical and electrophysiological approaches, allowing us to directly assess the nature of GABAergic inputs from the LA to the AC in the mouse. Our findings elucidate the existence of a long-range inhibitory pathway from the LA to the AC (LAC) via parvalbumin-expressing (LAC-Parv) and somatostatin-expressing (LAC-SOM) neurons. This research identifies distinct electrophysiological properties for genetically defined long-range GABAergic neurons involved in the communication between the LA and the cortex (LAC-Parv inhibitory projections → AC neurons; LAC-Som inhibitory projections → AC neurons) within the lateral amygdala cortical network. KEY POINTS: The mouse auditory cortex receives inputs from the lateral amygdala. Retrograde viral tracing techniques allowed us to identify two previously undescribed lateral amygdala to auditory cortex (LAC) GABAergic projecting neurons. Extensive electrophysiological, morphological and anatomical characterization of LAC neurons is provided here, demonstrating key differences in the three populations. This study paves the way for a better understanding of the growing complexity of the cortico-amygdala-cortico circuit.


Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/fisiologia , Tonsila do Cerebelo/fisiologia , Neurônios GABAérgicos/fisiologia , Parvalbuminas/metabolismo
8.
Hear Res ; 445: 108993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518392

RESUMO

Tinnitus is known to affect 10-15 % of the population, severely impacting 1-2 % of those afflicted. Canonically, tinnitus is generally a consequence of peripheral auditory damage resulting in maladaptive plastic changes in excitatory/inhibitory homeostasis at multiple levels of the central auditory pathway as well as changes in diverse nonauditory structures. Animal studies of primary auditory cortex (A1) generally find tinnitus-related changes in excitability across A1 layers and differences between inhibitory neuronal subtypes. Changes due to sound-exposure include changes in spontaneous activity, cross-columnar synchrony, bursting and tonotopic organization. Few studies in A1 directly correlate tinnitus-related changes in neural activity to an individual animal's behavioral evidence of tinnitus. The present study used an established condition-suppression sound-exposure model of chronic tinnitus and recorded spontaneous and driven single-unit responses from A1 layers 5 and 6 of awake Long-Evans rats. A1 units recorded from animals with behavioral evidence of tinnitus showed significant increases in spontaneous and sound-evoked activity which directly correlated to the animal's tinnitus score. Significant increases in the number of bursting units, the number of bursts/minute and burst duration were seen for A1 units recorded from animals with behavioral evidence of tinnitus. The present A1 findings support prior unit recording studies in auditory thalamus and recent in vitro findings in this same animal model. The present findings are consistent with sensory cortical studies showing tinnitus- and neuropathic pain-related down-regulation of inhibition and increased excitation based on plastic neurotransmitter and potassium channel changes. Reducing A1 deep-layer tinnitus-related hyperactivity is a potential target for tinnitus pharmacotherapy.


Assuntos
Córtex Auditivo , Zumbido , Ratos , Animais , Córtex Auditivo/fisiologia , Zumbido/metabolismo , Vigília , Ratos Long-Evans , Vias Auditivas/metabolismo
9.
Hear Res ; 444: 108965, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364511

RESUMO

Age-related auditory dysfunction, presbycusis, is caused in part by functional changes in the auditory cortex (ACtx) such as altered response dynamics and increased population correlations. Given the ability of cortical function to be altered by training, we tested if performing auditory tasks might benefit auditory function in old age. We examined this by training adult mice on a low-effort tone-detection task for at least six months and then investigated functional responses in ACtx at an older age (∼18 months). Task performance remained stable well into old age. Comparing sound-evoked responses of thousands of ACtx neurons using in vivo 2-photon Ca2+ imaging, we found that many aspects of youthful neuronal activity, including low activity correlations, lower neural excitability, and a greater proportion of suppressed responses, were preserved in trained old animals as compared to passively-exposed old animals. Thus, consistent training on a low-effort task can benefit age-related functional changes in ACtx and may preserve many aspects of auditory function.


Assuntos
Córtex Auditivo , Presbiacusia , Camundongos , Animais , Córtex Auditivo/fisiologia , Envelhecimento/fisiologia , Audição , Som , Estimulação Acústica , Percepção Auditiva/fisiologia
10.
PLoS Biol ; 22(2): e3002498, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358954

RESUMO

Speech recognition crucially relies on slow temporal modulations (<16 Hz) in speech. Recent studies, however, have demonstrated that the long-delay echoes, which are common during online conferencing, can eliminate crucial temporal modulations in speech but do not affect speech intelligibility. Here, we investigated the underlying neural mechanisms. MEG experiments demonstrated that cortical activity can effectively track the temporal modulations eliminated by an echo, which cannot be fully explained by basic neural adaptation mechanisms. Furthermore, cortical responses to echoic speech can be better explained by a model that segregates speech from its echo than by a model that encodes echoic speech as a whole. The speech segregation effect was observed even when attention was diverted but would disappear when segregation cues, i.e., speech fine structure, were removed. These results strongly suggested that, through mechanisms such as stream segregation, the auditory system can build an echo-insensitive representation of speech envelope, which can support reliable speech recognition.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Inteligibilidade da Fala/fisiologia , Encéfalo , Córtex Auditivo/fisiologia , Atenção , Estimulação Acústica
11.
Hear Res ; 444: 108972, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359485

RESUMO

Auditory semantic novelty - a new meaningful sound in the context of a predictable acoustical environment - can probe neural circuits involved in language processing. Aberrant novelty detection is a feature of many neuropsychiatric disorders. This large-scale human intracranial electrophysiology study examined the spatial distribution of gamma and alpha power and auditory evoked potentials (AEP) associated with responses to unexpected words during performance of semantic categorization tasks. Participants were neurosurgical patients undergoing monitoring for medically intractable epilepsy. Each task included repeatedly presented monosyllabic words from different talkers ("common") and ten words presented only once ("novel"). Targets were words belonging to a specific semantic category. Novelty effects were defined as differences between neural responses to novel and common words. Novelty increased task difficulty and was associated with augmented gamma, suppressed alpha power, and AEP differences broadly distributed across the cortex. Gamma novelty effect had the highest prevalence in planum temporale, posterior superior temporal gyrus (STG) and pars triangularis of the inferior frontal gyrus; alpha in anterolateral Heschl's gyrus (HG), anterior STG and middle anterior cingulate cortex; AEP in posteromedial HG, lower bank of the superior temporal sulcus, and planum polare. Gamma novelty effect had a higher prevalence in dorsal than ventral auditory-related areas. Novelty effects were more pronounced in the left hemisphere. Better novel target detection was associated with reduced gamma novelty effect within auditory cortex and enhanced gamma effect within prefrontal and sensorimotor cortex. Alpha and AEP novelty effects were generally more prevalent in better performing participants. Multiple areas, including auditory cortex on the superior temporal plane, featured AEP novelty effect within the time frame of P3a and N400 scalp-recorded novelty-related potentials. This work provides a detailed account of auditory novelty in a paradigm that directly examined brain regions associated with semantic processing. Future studies may aid in the development of objective measures to assess the integrity of semantic novelty processing in clinical populations.


Assuntos
Córtex Auditivo , Eletroencefalografia , Humanos , Masculino , Feminino , Semântica , Estimulação Acústica , Potenciais Evocados , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico
12.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38388426

RESUMO

Real-world listening settings often consist of multiple concurrent sound streams. To limit perceptual interference during selective listening, the auditory system segregates and filters the relevant sensory input. Previous work provided evidence that the auditory cortex is critically involved in this process and selectively gates attended input toward subsequent processing stages. We studied at which level of auditory cortex processing this filtering of attended information occurs using functional magnetic resonance imaging (fMRI) and a naturalistic selective listening task. Forty-five human listeners (of either sex) attended to one of two continuous speech streams, presented either concurrently or in isolation. Functional data were analyzed using an inter-subject analysis to assess stimulus-specific components of ongoing auditory cortex activity. Our results suggest that stimulus-related activity in the primary auditory cortex and the adjacent planum temporale are hardly affected by attention, whereas brain responses at higher stages of the auditory cortex processing hierarchy become progressively more selective for the attended input. Consistent with these findings, a complementary analysis of stimulus-driven functional connectivity further demonstrated that information on the to-be-ignored speech stream is shared between the primary auditory cortex and the planum temporale but largely fails to reach higher processing stages. Our findings suggest that the neural processing of ignored speech cannot be effectively suppressed at the level of early cortical processing of acoustic features but is gradually attenuated once the competing speech streams are fully segregated.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Percepção da Fala/fisiologia , Lobo Temporal , Imageamento por Ressonância Magnética , Atenção/fisiologia , Percepção Auditiva/fisiologia , Estimulação Acústica
13.
Nat Neurosci ; 27(4): 758-771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307971

RESUMO

Primary sensory cortices respond to crossmodal stimuli-for example, auditory responses are found in primary visual cortex (V1). However, it remains unclear whether these responses reflect sensory inputs or behavioral modulation through sound-evoked body movement. We address this controversy by showing that sound-evoked activity in V1 of awake mice can be dissociated into auditory and behavioral components with distinct spatiotemporal profiles. The auditory component began at approximately 27 ms, was found in superficial and deep layers and originated from auditory cortex. Sound-evoked orofacial movements correlated with V1 neural activity starting at approximately 80-100 ms and explained auditory frequency tuning. Visual, auditory and motor activity were expressed by different laminar profiles and largely segregated subsets of neuronal populations. During simultaneous audiovisual stimulation, visual representations remained dissociable from auditory-related and motor-related activity. This three-fold dissociability of auditory, motor and visual processing is central to understanding how distinct inputs to visual cortex interact to support vision.


Assuntos
Córtex Auditivo , Córtex Visual Primário , Animais , Camundongos , Estimulação Acústica , Estimulação Luminosa , Percepção Visual/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia
14.
Hum Brain Mapp ; 45(2): e26572, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339905

RESUMO

Tau rhythms are largely defined by sound responsive alpha band (~8-13 Hz) oscillations generated largely within auditory areas of the superior temporal gyri. Studies of tau have mostly employed magnetoencephalography or intracranial recording because of tau's elusiveness in the electroencephalogram. Here, we demonstrate that independent component analysis (ICA) decomposition can be an effective way to identify tau sources and study tau source activities in EEG recordings. Subjects (N = 18) were passively exposed to complex acoustic stimuli while the EEG was recorded from 68 electrodes across the scalp. Subjects' data were split into 60 parallel processing pipelines entailing use of five levels of high-pass filtering (passbands of 0.1, 0.5, 1, 2, and 4 Hz), three levels of low-pass filtering (25, 50, and 100 Hz), and four different ICA algorithms (fastICA, infomax, adaptive mixture ICA [AMICA], and multi-model AMICA [mAMICA]). Tau-related independent component (IC) processes were identified from this data as being localized near the superior temporal gyri with a spectral peak in the 8-13 Hz alpha band. These "tau ICs" showed alpha suppression during sound presentations that was not seen for other commonly observed IC clusters with spectral peaks in the alpha range (e.g., those associated with somatomotor mu, and parietal or occipital alpha). The choice of analysis parameters impacted the likelihood of obtaining tau ICs from an ICA decomposition. Lower cutoff frequencies for high-pass filtering resulted in significantly fewer subjects showing a tau IC than more aggressive high-pass filtering. Decomposition using the fastICA algorithm performed the poorest in this regard, while mAMICA performed best. The best combination of filters and ICA model choice was able to identify at least one tau IC in the data of ~94% of the sample. Altogether, the data reveal close similarities between tau EEG IC dynamics and tau dynamics observed in MEG and intracranial data. Use of relatively aggressive high-pass filters and mAMICA decomposition should allow researchers to identify and characterize tau rhythms in a majority of their subjects. We believe adopting the ICA decomposition approach to EEG analysis can increase the rate and range of discoveries related to auditory responsive tau rhythms.


Assuntos
Córtex Auditivo , Ondas Encefálicas , Humanos , Algoritmos , Córtex Auditivo/fisiologia , Magnetoencefalografia
15.
Cell Rep ; 43(2): 113758, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358887

RESUMO

Meaningful auditory memories are formed in adults when acoustic information is delivered to the auditory cortex during heightened states of attention, vigilance, or alertness, as mediated by neuromodulatory circuits. Here, we identify that, in awake mice, acoustic stimulation triggers auditory thalamocortical projections to release adenosine, which prevents cortical plasticity (i.e., selective expansion of neural representation of behaviorally relevant acoustic stimuli) and perceptual learning (i.e., experience-dependent improvement in frequency discrimination ability). This sound-evoked adenosine release (SEAR) becomes reduced within seconds when acoustic stimuli are tightly paired with the activation of neuromodulatory (cholinergic or dopaminergic) circuits or periods of attentive wakefulness. If thalamic adenosine production is enhanced, then SEAR elevates further, the neuromodulatory circuits are unable to sufficiently reduce SEAR, and associative cortical plasticity and perceptual learning are blocked. This suggests that transient low-adenosine periods triggered by neuromodulatory circuits permit associative cortical plasticity and auditory perceptual learning in adults to occur.


Assuntos
Córtex Auditivo , Animais , Camundongos , Córtex Auditivo/fisiologia , Adenosina , Aprendizagem/fisiologia , Estimulação Acústica , Som
16.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38367612

RESUMO

Consequences of perceptual training, such as improvements in discriminative ability, are highly stimulus and task specific. Therefore, most studies on auditory training-induced plasticity in adult brain have focused on the sensory aspects, particularly on functional and structural effects in the auditory cortex. Auditory training often involves, other than auditory demands, significant cognitive components. Yet, how auditory training affects cognition-related brain regions, such as the hippocampus, remains unclear. Here, we found in female rats that auditory cue-based go/no-go training significantly improved the memory-guided behaviors associated with hippocampus. The long-term potentiations of the trained rats recorded in vivo in the hippocampus were also enhanced compared with the naïve rats. In parallel, the phosphorylation level of calcium/calmodulin-dependent protein kinase II and the expression of parvalbumin-positive interneurons in the hippocampus were both upregulated. These findings demonstrate that auditory training substantially remodels the processing and function of brain regions beyond the auditory system, which are associated with task demands.


Assuntos
Córtex Auditivo , Hipocampo , Ratos , Feminino , Animais , Hipocampo/fisiologia , Encéfalo , Potenciação de Longa Duração , Córtex Auditivo/fisiologia
17.
Elife ; 132024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334469

RESUMO

Orbitofrontal cortex (OFC) is classically linked to inhibitory control, emotion regulation, and reward processing. Recent perspectives propose that the OFC also generates predictions about perceptual events, actions, and their outcomes. We tested the role of the OFC in detecting violations of prediction at two levels of abstraction (i.e., hierarchical predictive processing) by studying the event-related potentials (ERPs) of patients with focal OFC lesions (n = 12) and healthy controls (n = 14) while they detected deviant sequences of tones in a local-global paradigm. The structural regularities of the tones were controlled at two hierarchical levels by rules defined at a local (i.e., between tones within sequences) and at a global (i.e., between sequences) level. In OFC patients, ERPs elicited by standard tones were unaffected at both local and global levels compared to controls. However, patients showed an attenuated mismatch negativity (MMN) and P3a to local prediction violation, as well as a diminished MMN followed by a delayed P3a to the combined local and global level prediction violation. The subsequent P3b component to conditions involving violations of prediction at the level of global rules was preserved in the OFC group. Comparable effects were absent in patients with lesions restricted to the lateral PFC, which lends a degree of anatomical specificity to the altered predictive processing resulting from OFC lesion. Overall, the altered magnitudes and time courses of MMN/P3a responses after lesions to the OFC indicate that the neural correlates of detection of auditory regularity violation are impacted at two hierarchical levels of rule abstraction.


Assuntos
Córtex Auditivo , Potenciais Evocados Auditivos , Humanos , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Eletroencefalografia/métodos , Percepção Auditiva/fisiologia , Córtex Pré-Frontal , Córtex Auditivo/fisiologia
18.
Sci Adv ; 10(7): eadk0010, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363839

RESUMO

Melody is a core component of music in which discrete pitches are serially arranged to convey emotion and meaning. Perception varies along several pitch-based dimensions: (i) the absolute pitch of notes, (ii) the difference in pitch between successive notes, and (iii) the statistical expectation of each note given prior context. How the brain represents these dimensions and whether their encoding is specialized for music remains unknown. We recorded high-density neurophysiological activity directly from the human auditory cortex while participants listened to Western musical phrases. Pitch, pitch-change, and expectation were selectively encoded at different cortical sites, indicating a spatial map for representing distinct melodic dimensions. The same participants listened to spoken English, and we compared responses to music and speech. Cortical sites selective for music encoded expectation, while sites that encoded pitch and pitch-change in music used the same neural code to represent equivalent properties of speech. Findings reveal how the perception of melody recruits both music-specific and general-purpose sound representations.


Assuntos
Córtex Auditivo , Música , Humanos , Percepção da Altura Sonora/fisiologia , Córtex Auditivo/fisiologia , Encéfalo/fisiologia , Idioma
19.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38350998

RESUMO

Human listeners possess an innate capacity to discern patterns within rapidly unfolding sensory input. Core questions, guiding ongoing research, focus on the mechanisms through which these representations are acquired and whether the brain prioritizes or suppresses predictable sensory signals. Previous work, using fast auditory sequences (tone-pips presented at a rate of 20 Hz), revealed sustained response effects that appear to track the dynamic predictability of the sequence. Here, we extend the investigation to slower sequences (4 Hz), permitting the isolation of responses to individual tones. Stimuli were 50 ms tone-pips, ordered into random (RND) and regular (REG; a repeating pattern of 10 frequencies) sequences; Two timing profiles were created: in "fast" sequences, tone-pips were presented in direct succession (20 Hz); in "slow" sequences, tone-pips were separated by a 200 ms silent gap (4 Hz). Naive participants (N = 22; both sexes) passively listened to these sequences, while brain responses were recorded using magnetoencephalography (MEG). Results unveiled a heightened magnitude of sustained brain responses in REG when compared to RND patterns. This manifested from three tones after the onset of the pattern repetition, even in the context of slower sequences characterized by extended pattern durations (2,500 ms). This observation underscores the remarkable implicit sensitivity of the auditory brain to acoustic regularities. Importantly, brain responses evoked by single tones exhibited the opposite pattern-stronger responses to tones in RND than REG sequences. The demonstration of simultaneous but opposing sustained and evoked response effects reveals concurrent processes that shape the representation of unfolding auditory patterns.


Assuntos
Córtex Auditivo , Percepção Auditiva , Masculino , Feminino , Humanos , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Encéfalo/fisiologia , Magnetoencefalografia , Córtex Auditivo/fisiologia
20.
Cell Rep ; 43(3): 113864, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421870

RESUMO

The neural mechanisms underlying novelty detection are not well understood, especially in relation to behavior. Here, we present single-unit responses from the primary auditory cortex (A1) from two monkeys trained to detect deviant tones amid repetitive ones. Results show that monkeys can detect deviant sounds, and there is a strong correlation between late neuronal responses (250-350 ms after deviant onset) and the monkeys' perceptual decisions. The magnitude and timing of both neuronal and behavioral responses are increased by larger frequency differences between the deviant and standard tones and by increasing the number of standard tones preceding the deviant. This suggests that A1 neurons encode novelty detection in behaving monkeys, influenced by stimulus relevance and expectations. This study provides evidence supporting aspects of predictive coding in the sensory cortex.


Assuntos
Córtex Auditivo , Potenciais Evocados Auditivos , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...